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Abstract 

The Internet is evolving from an infrastructure that provides basic communication services into a 
more sophisticated infrastructure that supports a wide range of electronic services such as virtual 
reality games and rich multimedia retrieval services. However, this evolution is happening only 
slowly, in part because the communication infrastructure is too rigid. In this report, we present 
a programmable router architecture, in which the control plane functionality of the router can be 
extended dynamically through the use of delegates. Delegates can control the behavior of the router 
through a well defined router control interface, allowing service providers and third-party software 
vendors to implement customized traffic control policies or protocols. We describe Darwin, a system 
that implements such an architecture. We emphasize the runtime environment the system provides 
for delegate execution and the programming interface the system exports to support delegates. We 
demonstrate the advantages of using this system by presenting several delegate examples. 



1     Introduction 

The Internet has evolved from a basic bitway pipe to a more sophisticated infrastructure that 
supports electronic services. The services today are fairly primitive and are typically related to 
collecting information over the Web. Richer services such as high-quality videoconferencing, virtual 
reality games, and distributed simulation have been promised. Progress is slow in part because 
the infrastructure is inflexible. Routers are closed boxes that execute a restricted set of vendor 
software. Compute and storage servers are typically dedicated to support one type of service. An 
alternate architecture is to have an open infrastructure in which specific services can be installed 
and instantiated on demand, much like what we do on a PC today. One of the advantages of this 
approach is that it allows a larger community of people to develop services, which spurs innovation. 
We use some examples to motivate this approach. 

The first class of examples addresses the customization of traffic control and management. 
Today, the range of traffic management options is fairly limited. While switches and routers in- 
creasingly have some support for classification and scheduling, these capabilities are often only used 
in simple ways, such as to filter out certain types of traffic, to do some simple prioritization of flows, 
or to implement standardized QoS mechanisms such as differentiated services. One could envision 
that users could employ these mechanisms to handle their traffic in specific ways. For example, one 
service provider could implement gold/silver/bronze service differentiation in a proprietary way, 
while another service provider implements communication services with stronger guarantees. Simi- 
larly, one could envision deploying a virtual private network (VPN) service, in which VPNs can use 
different traffic control policies or control protocols. 

The second class of examples consists of value-added services, that is, services that require 
not only communication, but also data processing and access to storage. Examples include video- 
conferencing with video transcoding and mixing support, customized Web searching services, and 
application-specific multicast. While it is possible to deliver these services using a set of dedicated 
servers, it would be more efficient if services could deployed dynamically on servers leased on an as 
needed basis. This would allow the service to adapt to the demands and locations of the customers. 
Value-added services can also benefit from customized traffic management support. For example, 
a virtual reality game service provider may want to handle control, audio, and video traffic flows 
in different ways. This may require customized traffic control policies on the router. 

As long as routers are closed boxes that are shipped with a set of standard protocols, it is unlikely 
that these examples will be realized. The above examples can best be supported by a programmable 
network infrastructure. Such a network will allow computing, storage, and communication resources 
to be allocated and programmed to deliver a specific service. Standards (e.g., ODBC, POSIX) 
exist to use storage servers (Web, file systems, databases) and compute servers. Routers (i.e., 
communicatin servers), however, are not programmable today. In this report we present a router 
architecture in which the control plane functionality of the router can be extended using delegates, 
code segments that implement customized traffic control policies or protocols. Delegates can affect 
how the router treats the packets belonging to a specific user through the router control interface 
(RCI). With this architecture, a broader community (e.g., third party software vendors or value- 
added service providers) can develop applications for routers. 

The remainder of the report is organized as follows. We first define a network architecture in 
Section 2 in which network functions (e.g., QoS) can be selectively customized to meet the special 
needs of users. In Section 3, we describe Darwin, a specific instance of the above architecture. 
We focus on the runtime environment for delegates, code segments that can customize network 
control and management. In Section 4 we present some examples of how delegates can be applied 
to address a variety of resource management and traffic control problems, and we discuss security 
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issues raised by the use of delegates in Section 5. Finally, we present related work in Section 6 and 
conclude the report in Section 7. 

2    A Programmable Network Architecture 

We first characterize the network programmability requirements and introduce the concept of a 
delegate. We then present a programmable network architecture that can support delegates. 

2.1     Network programmability 

We can distinguish between two types of operations on data flows inside the network. The first 
class involves manipulation of the data in the packets, such as video transcoding, compression, 
or encryption. Since most routers do not have significant general-purpose processing power, this 
type of processing will typically take place on compute servers (e.g., workstation clusters inside the 
network infrastructure). In the future, these tasks could also be performed on routers that have 
been specifically built to also perform data processing, besides the usual routing functions. The 
second class of operations on data flows changes how the data is forwarded but typically does not 
require processing or even looking at the body of packets. Examples include tunneling, rerouting, 
selective packet dropping, and changing the bandwidth allocation of a flow. The nature of these 
operations is such that they are best executed on routers or switches. 

We call the code segments that perform these tasks delegates since they represent the owner 
of the data flows inside the network. Data delegates perform data processing operations and 
execute on compute servers or specially designed routers. Control delegates execute on routers 
and are involved in the control of data flows. This simple classification of delegates is somewhat 
artificial since some delegates may fall in between these two classes. For example, a delegate that 
is concerned with control may need to look at the packet body to decide how to handle packets. 
Similarly, a "mostly control" delegate may on rare occasions have to modify a packet. Nevertheless, 
the distinction is useful because the two classes of delegates impose very different requirements on 
the system on which they run. Control delegates require an environment that provides a rich set 
of mechanisms to control data flows, while data delegates must run on a platform with substantial 
computational power. 

While nobody is likely to argue against the use of data delegates on compute servers for data 
processing, the need for control delegates is less obvious. One could imagine routers with fixed 
functionality, similar to today's routers, where users can control how their traffic flows are han- 
dled by passing parameters to the routers using a signalling protocol. The examples discussed in 
Section 1 provide some reasons that directly executing code (i.e., control delegates) on the routers 
may be a more effective way to customize traffic control and management. A first reason is that 
control delegates can respond much more quickly to changes in the traffic conditions; it would take 
an entity at the edge of the network at least one and more likely several round-trip times before it 
could first observe and then respond to a change in the network. Second, it seems impractical to 
identify all possible user requirements a priori, so that they can be addressed by the default router 
software; an architecture based on delegates is more flexible and extensible. Finally, supporting 
customization by extending router functionality may often be a more natural and thus less error- 
prone solution. For example, if a service provider wants to use a routing protocol that is optimized 
for its traffic, doing so from the edges of the network is likely to be unnecessarily complicated. 
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Figure 1: Node architecture. 

2.2    Router architecture 

Figure 1 presents a node architecture through which delegates can be added to a router. The 
architecture shows a control plane (top part) that executes control protocols such as routing and 
signalling, and a data plane (bottom part) responsible for packet forwarding. Control delegates 
execute in a special runtime environment that is part of the control plane. This design is motivated 
by both the intended use of control delegates (control and management of traffic flows) and practical 
design considerations (we do not want to add unnecessary complexity to the data forwarding path, 
where speed and simplicity are critical). On some routers it may also be possible to insert data 

delegates in the data forwarding plane. 
Control delegates can change how traffic is handled in the data forwarding plane through the 

RCI. The RCI provides a set of operations on flows, sequences of packets with a semantic relation- 
ship defined by applications and service providers. Flows are defined on each router using a flow 
spec [5], a list of constraints that fields in the packet header must match for a packet to belong 
to the flow. The classifier uses the flow specs to determine what flow incoming packets belong to. 
Classification should take place early in the data forwarding path so that packets can be handled 
appropriately. Some flow-specific actions, such as tunneling and rerouting, are best executed on 
the input interface. Actions on the output interface are generally associated with QoS related 
parameters so that after classification the scheduler can schedule the packets belong to each class 

accordingly to meet their QoS requirements. 
We can view the RCI as an instruction set that operates on flows as a basic data type. A 

critical design decision in the architecture is the definition of this interface (what functions should 
be exported to the delegates). The RCI should be broad enough to support both value-added 
services and network management applications. However since the RCI will be used by control 
delegates on routers, efficiency and security issues should also be taken into account. We will 

elaborate on a specific implementation of the RCI later. 
Most of the components in the proposed router architecture can also be found in architectures 

designed to support quality of service (QoS) in the Internet. For example, the packet classification 
and scheduling modules are present in the Internet Engineering Task Force (IETF) integrated 
services model [4, 13] and the more recent differentiated services model [23], [2]. The difference 
lies in that this architecture providing programmability in the control plane through the use of 
delegates and the RCI programming interface, RCI. 



3     Darwin Delegates 

We give a brief overview of the Darwin 
runtime environment. 

system and describe the Darwin RCI and delegate 

3.1     Darwin delegate design 

The Darwin project developed a set of customizable resource management mechanisms. Customiz- 
ability allows applications and service providers to tailor resource management, and thus service 
quality, to fit their needs. Darwin includes three mechanisms that operate on different timescales. 
A resource broker, called Xena, selects resources that meet application needs using application- 
specified metrics to optimize resource utilization [9]. Delegates support customizable runtime re- 
source management, as described above. Finally, Darwin uses a hierarchical packet scheduler that 
supports a wide range of policies and integrates per-flow QoS and link sharing in a single frame- 
work [24]. The activities of the three mechanisms are coordinated by a signalling protocol called 

Beagle [10]. 
Darwin delegates are based on the architecture outlined in the previous section, but the ar- 

chitecture is extended in two ways. First, in Darwin the classifier that identifies flows uses not 
only the standard fields in the IP and transport headers (IP addresses, port numbers, and protocol 
identifier), but also an optional application identifier. This allows services to define flows based on 
their own semantics. An example is layered video, where different layers are tagged with a different 
application identifier. In our current implementation, the application identifier is stored in the 
packet as an IP option. Other formats (e.g., the IPv6 flow ID) are possible. Every packet should 
normally be classified once, soon after it arrives on the router. In Darwin, for implementation 
convenience, we use two classification engines, one at the input port and the other at the output 
port. The extra classification adds negligible overhead in our system. 

155 Mbps 

100 Mbpi 

Figure 2: Example resource tree. 

Second, Darwin managess resources in a hierarchical fashion. This means that the resource 
distribution of a link is represented by a resource tree (Figure 2), with the root representing the 
link, leaf nodes actual data flows, and interior nodes organizations, services or applications that 
control the flow or flow aggregate corresponding to their children. Resource allocation policies can 
be specified for both leaf and interior nodes, so both per-flow QoS and link sharing can be sup- 
ported in the same framework. This can be viewed as a "divide-and-conquer" approach to resource 
management. The bandwidth of a link (root node) can be divided across a set of organizations 
(children of the root), each of which can manage its bandwidth share by constructing an appro- 
priate subtree. Darwin uses the Hierarchical Fair Service Curve scheduler [24], which has excellent 



isolation properties; changes in the structure or policies of one subtree do not affect the way traffic 
controlled by other subtrees is handled. 

Control Delegates 

I 

Figure 3: Pairing customization in the control and data plane. 

The combination of delegates (in the control plane) and hierarchical resource management 
(in the data plane) provides an excellent framework for the customization of traffic control and 
management. We emphasized earlier that one use of delegates is to customize how a specific 
set of flows is handled. This is achieved by associating a delegate with a specific node in the flow 
hierarchy(Figure 3), so the delegate operates only on flows associated with that node and its subtree 
and cannot affect other flows. In other words, the hierarchical scheduler provides the isolation of 
network resources in the data plane and the matching hierarchical delegates provide the isolation 
of traffic management and control in the control plane. Note that some delegates may operate on 
the network as a whole; such delegates are logically associated with the root. 

3.2    Router Control Interface 

We describe five classes of functions that are necessary for the RCI to support a broad spectrum 
of delegates. 

3.2.1     Flow manipulation methods 

The RCI presents delegates with a flow-based programming model. This class of methods allows 
delegates to define and manage flows by updating the classifier data structures. For example, a 
flow defined with a flow spec ( a list of header fields) can be added to the classifier through the 
add Jlow call. A handle corresponding to this flow is returned. Subsequent treatment on this flow, 
such as specifying QoS parameters or traffic redirecting parameters, are then performed using this 
handle. Four methods are available for various flow manipulation. 

addJlow (interface-name, flow spec) creates a flow with flowspec on the given interface and 
returns a flowJd to the caller; 

delete_flow (interface-name, flow.id) removes the flow with flow Ad from the specified interface; 
modify_flow (interface-name, flowJd, new-flowspec) changes the flow spec of the flow with 

flowJd to new-flowspec and returns a new flowJd; 
retrieve_flow_spec (interface-name, flowJd) returns the flow spec of the flow with flowJd. 



3.2.2 Resource management methods 

Delegates change how resources are allocated and distributed across flows by modifying states in 
the scheduler through the RCI. The scheduler relies on its hierarchical resource tree to schedule 
packets to meet each flow's QoS requirement. A node in the resource tree is identified by a nodejd, 
and may correspond to multiple flows. Each resource tree node is assigned a set of QoS parameters 
to specify the service that the flows belonging to this node will receive. The precise nature of this 
class of functions depends on the scheduler, and the functions listed below in our implementation 

should be representative of most hierarchical schedulers. 
create_node(interface-name, parenLnodeJd) creates a child node for the node with parent-node Jd 

and returns a nodeJd.   By default, the root node which corresponds to the total resource of an 

interface is created at the system start up time; 
de\ete-Xiode(interface-name,nodeJd) deletes the node with nodeJd from the resource tree; 
reserveservice(interface-name,nodeJd, service-parameters) tries to reserve services specified 

in service-parameters for the node with nodeJd. This call is subject to resource admission control, 

and if it returns successfully, flows belonging to this node will receive the service reserved. 
modify -service (interface-name,nodeJd, service-parameters) tries to change services for the 

node with nodeJd according to the service parameters specified in service-parameters. This call 
is also subject to resource admission control, and if it returns successfully, flows belonging to this 
node will receive the service defined by service-parameters; 

ELdd-fiowJ,o-node(interface-name,nodeJd, flowJd) adds the flow with flowJd to the set of 
flows that belong to the node with nodeJd. This basically grants the flow with the service that the 

node has; 
del-flow _from_node(m£er/ace_narae,nodeJd, flowJd) removes the flow with flowJd from the 

set of flows that belong to the node with nodeJd. By calling this method, a flow's service can be 

revoked; 
retrieve_tree(mter/ace_narae, nodeJd) returns the resource tree hierarchy rooted at the node 

with nodeJd; 
retrieve Jiows (interface-name, nodeJd) returns the list oi flow-id's, associated with the node 

with nodeJd. 

3.2.3 Flow redirecting methods 

As opposed to the above class of methods, which have only "local" meaning, the RCI methods in 
this class have "global" meaning in that they may affect the traffic distribution in the network. 
Delegates use the associate_action method to bind certain actions with flows for flow redirecting 
purposes. For example, a delegate can reroute a flow's packets using a route other than the default 
to avoid hot spots in the network. While the resource management RCI calls typically control a 
router's output port functionalities, the flow redirection actions typically take place on the input 

port. 
associate-action (inteface-name, flowJd, action-data) associates the proper action data re- 

quired to the flow with flowJd. 
Currently three actions are supported: 
tunneling: the action data for tunneling is two encapsulation IP addresses: encapsrc-addr 

and encap-dsLaddr. The packets belonging to this flow will be prepended with an extra header 
using encapsrc-addr and encap-dst-addr as source and destination addresses. By associating this 
action with a flow, a delegate can redirect the flow's packets to a selected destination; 

rerouting: the action data for rerouting is next-hop-addr, which is the next hop address that 



this flow's packets will be forwarded to. This will enable the data plane of the router to skip the usual 
routing table look up and forward packets using the interface that corresponds to next.hop.addr, 

dropping: drops a flow's packets at the input port. 
The method retrieve_action(m£er/ace_name, flowJd) returns the action data that associates 

with the flow with flowJd. 

Methods of direct operation on a router's routing table can be used by delegates that have superuser 

privileges. These methods do not operate on a per-flow basis. 
get.route(dst.addr) retrieves next hop address from the routing table for dst.addr; 

change_route(dst.addr, next.hop.addr) updates the next hop address in the routing table entry 

for dst.addr to next.hop.addr, and this requires superuser privilege. 

3.2.4 Network status monitoring methods 

This class of methods allows delegates to probe certain network states, e.g., queue occupancy, kernel 
statistics counters, error flags, etc. It can also involve posting requests for notification from the 
kernel of a set of specific events, such as crossing of a queue occupancy threshold and occurrence 
of a failure condition. By monitoring the network status using these methods, a delegate can 
intelligently take other proper actions in a timely fashion according to what it has observed. For 
example, a delegate may set up a threshold for a particular flow's queue using the set method, 
and later on can periodically query the queue length by calling the probe method. This can also 
be done by setting up an asynchronous notification with the kernel using the request method. 
This way the kernel can signal the delegate whenever the queue length is too long. As another 
example, a delegate can turn on the monitor mode in the kernel by using monitor .on method, and 
then retrieve packet counters in the kernel through retrieve_data method to compute the average 

bandwidth usage of a particular flow. 

3.2.5 Support for delegate communication 

Delegates can set up communication channels to coordinate activities with peers on other routers 
and interact with the application on endpoints. Messaging between them allows delegates to gather 
global information so that proper global actions may be taken, such as rerouting for load balancing. 
Interaction with applications on end-points increases the flexibility of the system, as adaptation 
to network events typically involves the sources. Inter-delegate communication is often application 
specific. We built the communication channels between delegates on top of standard communication 
methods. 

3.2.6 Other methods 

The above five classes of functions are likely to be appropriate for most routers. However, individual 
routers may have additional functionality on their data forwarding path and may allow delegates 
to control these functions. As an example, on a router that supports random early detection 
(RED), delegates may be able to change the thresholds used to trigger early packet drops. On a 
DiffServ edge router, delegates may need access to the control parameters for shapers and meters. 
Other routers may have algorithms to identify non-conformant flows and may allow delegates to get 
access to this information; we will give an example using this functionality in Section 4. Clearly, an 
interface standard like management information base (MIB) definitions for network management 
would have to be extensible, so new calls can be added as technology evolves. 



3.3    Delegate implementation 

Darwin delegates are based on Java and use the JDK1.2 Java virtual machine (JVM) from Sun 
Microsystems [16]. This environment gives us acceptable performance, portability, and safety 
features inherited from the language. Delegates are executed as Java threads inside the virtual 
machine "sandbox". A delegate is characterized by its QoS requirement (e.g., the amount of CPU 

and memory resources needed), and runtime environment needed. 
Experiments to measure the overhead of the RCI calls from within the delegate runtime envi- 

ronment showed minimal difference between calls from Java delegates and calls from equivalent C 
programs. That is a reasonable result since RCI calls are actually implemented as native methods. 
The overhead of most delegates calls in an unloaded system is measured to be around 5 microsec- 
onds using machines in our testbed (see Section 4). As the system load increases (e.g., with packet 

forwarding) the system call latency becomes highly variable and unpredictable since our operating 

systems do not offer real-time guarantees. 
Delegates are installed through the Darwin signalling protocol, Beagle, using a multi-step pro- 

cess. First, the application or service provider submits delegate Java bytecode, delegate resource 
and runtime requirements, together with a list of flow specs to Beagle. Second, Beagle transports 
this information to Beagle daemons running on the relevant routers. Third, each Beagle daemon 
performs local admission control for both the flows and (if necessary) any delegates. For delegates, 
this includes verifying that the delegate runtime environment has the required libraries to sup- 
port the delegate. At this point, Beagle should also verify that the router has sufficient CPU and 
memory resources to accommodate the delegate, but since our environment (PC-based routers) can 
not explicitly manage these resources, this step is not implemented. Finally, if admission control 
succeeds, Beagle then sets up the flows by making appropriate calls to the classifier and scheduler, 
passes the bytecode to the delegate runtime environment to start up the delegate, and then passes 
the delegate a set of handles identifying the flows for which it is responsible. The interface that is 
used by Beagle to start delegates is described in more detail elsewhere [10]. 

Delegates written in C are also supported in our system but in a much more restrictive way. 

Data delegates that run on compute servers can be set up in a similar fashion. 
Delegates are a very focused application of active networking [26]: they are installed asyn- 

chronously from the rest of the data traffic by a separate signalling protocol on a per-application 
or per-service basis; a delegate can only operate on the flows that it is associated with. As is the 
case with active networking in general, delegates raise significant safety and security concerns. In 
Section 5 we will discuss safety and security issues related to delegates in more details. 

4    Examples 

The Darwin system has been implemented on FreeBSD and NetBSD PC routers. Experiements 
were performed to test the system on a local testbed shown in Figure 4. The three routers, shown 
in boxes, are Pentium II 266 MHz PCs running the Darwin kernel which is built on top of FreeBSD 
2.2.6. The end systems ml - m9 are Digital Alpha 21064A 300 MHz workstations running Digital 
Unix 4.0. All links are full-duplex point-to-point Ethernet links configurable as either 100 Mbps 
or 10 Mbps. Unless specified, the links are configured as 100 Mbps. In this section, we present 
five delegate examples and show some experimental results obtained from this testbed. The first 
three examples demonstrate how application specific services can be added to the network through 
delegates to improve the quality of execution of these applications. The last two examples show 
that delegates can dynamically customize traffic control and management in a network. 



Figure 4: Darwin IP testbed topology. 
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Figure 5: Video quality under four scenarios. 

4.1     Selective packet dropping for MPEG video streams 

MPEG video streams are very sensitive to random packet loss because of the dependencies between 
three different frame types: I frames (intracoded) which are self contained, P frames (predictive) 
which use a previous I or P frame for motion compensation and thus depend on this previous frame, 
and B frames (bidirectional-predictive) which use (and thus depend on) previous and subsequent 
I or P frames. Because of these inter-frame dependencies, losing I frames during transmission is 
extremely damaging, while B frames are the least critical. Under congestion, the received video 
quality is degraded due to packet loss but the quality can be enhanced if only B frames are dropped 
at the congested link instead of random frames (including crucial I frames) being dropped. 

Delegates can be used to perform selective packet dropping on congested routers. Delegates 
are injected into routers that may potentially be congested, and these delegates are associated 
with MPEG flows in the data plane. In the resource hierarchy, a flow is set up to correspond to 
the MPEG application and three sub-flows differing from one another in the application identifier 
field in the flow spec are then added to differentiate the three different frame types. Packets 
belonging to different frame types are marked with specific application identifiers so that they will 
be classified into different sub-flows. Delegates monitor the queue length of the MPEG flow, and 
when congestion is detected (e.g., the queue length exceeds some preset threshold), delegates will 
instruct the data plane to drop the packets belonging to the B frame sub-flow, thus protecting I 
and P frames from being dropped due to queue overflow. As a result, the receiver will observe a 



gracefully degraded quality. 
Experiments were performed on the testbed to demonstrate the effectiveness of selective packet 

discarding delegates. Three streams are sent over the Timberline-Maui link (bottleneck link) of 
the testbed: two MPEG video streams and one unconstrained UDP stream. The UDP stream 
causes congestion on this link. Both video sources send at a rate of 30 frames/second, and our 
performance metric is the rate of correctly received frames. Figure 5 compares the performance of 
four scenarios. In the first scenario, the video and UDP data packets are treated equally, and the 
random packet losses result in a very low frame rate, as expected. In the second case, the video 
streams share a bandwidth reservation which equals to the sum of the average video bandwidths. 
This improves performance, but the video streams are bursty, and random packet loss during peak 
transfers results in less than a third of the frames being received correctly. In the third scenario, we 
place a delegate on Timberline. As described earlier, the delegate monitors the length of queue used 
by video streams and drops the B frames when congestion is observed. Packet dropping is switched 
off when the queue size drops below a lower threshold. Figure 5 shows that is quite effective: the 
frame rate roughly doubles. 

While delegates provide an elegant way of selectively dropping B frames, the same effect could 
be achieved by associating different priorities with different frame types. In scenario four we use a 
delegate to implement a more sophisticated customized drop policy. In scenario three, either all or 
none of the B frames are dropped. By dropping the B frames of only a subset of the video streams, 
we can achieve finer grain congestion control. The advantage of having a delegate control selective 
packet dropping is that choice of applications that should be degraded first can be customized. 
Scenario four in Figure 5 shows the results for a simple "time sharing" policy, where every few 
seconds the delegate switches the stream that has B frames dropped. This improves performance 
by another 10-20%. Policies that differentiate between flows could similarly be implemented. 

4.2    Dynamic control of MJPEG video encoding 

An alternative approach to selective frame dropping in video applications to deal with congestion 
is to use a video transcoder to compress, or change the level of compression, of the video stream 
depending on the available bandwidth. We use both control and data delegates in this example 
to illustrate how delegates can control compression levels for video quality optimization via flow 
monitoring, flow redirecting and inter-delegate communication. A control delegate is set up on the 
router before the bottleneck link on the route of the video application. The control delegate alters 
the original route that the video stream will take by first redirecting the flow to a data delegate 
which resides on a compute server next to the router. The data delegate functions as a transcoder 
in that it takes in raw video and generates MJPEG frames using different compression levels. The 
MJPEG frames are then fed back to the bottleneck router, and will only then be forwarded to the 
originally intended receiver.The control delegate monitors the bottleneck link's congestion status. 
When facing congestion, the control delegate directs the data delegate to use a higher compression 
level for less bandwidth usage. At other times, when the control delegate sees abundant bandwidth 
on the bottleneck link, it can prompt the data delegate to deploy a lower compression level for 
better video quality. This allows the video flow to opportunistically take advantage of available 
bandwidth. 

In the experiment, an application consisting of two MJPEG video streams and two bursty 
data streams compete for network bandwidth with other users, modeled as an unconstrained UDP 
stream. All flows are directed over the 10 Mbps Timberline-Maui link. The application has 70% 
of the bandwidth, 20 for video and 50 for data; the remaining 30% bandwidth of the link is for 
the competing users. The application's data streams belong to a distributed fast Fourier transform 
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(FFT) computation. The data traffic is very bursty, since FFT alternates between compute phases, 
when there is no network usage, and communication phases, when the nodes exchange large data 
sets. An important property of the hierarchical link-sharing scheduler is that the video flows have 
priority on taking bandwidth not used by the FFT flows. This means that video quality can be 
improved significantly during the compute phases of the FFT, if the video can make use of the 
additional bandwidth. 

A control delegate is placed on router Timberline and a data delegate is installed on server 
m9. The video traffic received by Timberline is forwarded first to m9 for data processing; the 
generated MJPEG frames are sent back to Timberline. Timberline then sends these frames out on 
the Timberline-Maui link. Figure 6 shows a screen shot of the bandwidth used by the video flows 
(light grey) and FFT (dark grey). During FFT bursts, bandwidth is limited (20% of the link) and 
video quality is low, but between FFT bursts the video can use almost 70% of the link, resulting 
in increased video quality. Figure 7 shows a histogram of the received frame quality. We see that 
the majority of frames are received with either maximum quality of 100 (received when the FFT 
is in its computation phase) or with the minimum quality of 0 (when FFT is in its communication 
phase). Frames received with other quality settings reflect the ramp up and ramp down behavior 
performed by the control delegate as it tracks the available bandwidth. 

Sharing (%) 

4 100 

SO 
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1495 
uTime 

2991    (msec) 

Figure 6: Bandwidth sharing between video and FFT streams. 

4.3    Load-sensitive flow rerouting 

Routing decisions in the Internet today are mostly load-insensitive and application-independent. 
While this results in simple and stable routing protocols, it can also cause inefficient use of network 
resources. Discovering a lightly-loaded route and using it to reroute an application's flow may 
significantly improve the application's performance. Similarly in a client-server scenario, there are 
times that one server is overloaded, and in the meantime, other servers are idle. In this case, it 
would make sense to have a mechanism inside the network to redirect some requests to the lightly 
loaded servers to achieve better overall performance. 

By using the RCI, delegates can reroute a flow's packets or even redirect a flow to a different 
destination. We will now use a simple example to illustrate how flow rerouting can be done using 
multiple delegates to improve the application's network throughput. 

The example application has three TCP flows m9-m2, m9-m4, and m8-m6, which are shown as 
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Figure 7: Distribution of received JPEG quality. 

Flow 1, 2 and 3 respectively in Figure 4. The application reserves 50% of the bandwidth on Link 
1, 2 and 3. Delegates are installed on each router to monitor and optimize the throughput of these 
flows. By default, the route for Flow 1 and Flow 2 passes routers Timberline and Maui only (the 
shortest path). An alternative route using all three routers is shown as a dotted line in Figure 4. 

The delegate on Timberline uses the following algorithm to reroute a flow when necessary: 
periodically, the delegate retrieves bandwidth usage of Flow 1 and 2 from the data plane, and 
queries the delegate on Whiteface to get the available bandwidth for this application on Link 3. 
When the available bandwidth on the path consisting of Link 2 and 3 is higher than the bandwidth 
being used by an active flow (Flow 1 or 2), the delegate will reroute Flow l's packets to Link 
2 to avoid the competition between Flow 1 and 2. When the default route has higher available 
bandwidth, the delegate will then resume Timberline's default forwarding behavior. 

In the experiment, the three flows are turned on and off at different times; Figure 8 shows the 
throughput of these flows. Initially, only Flow 1 is active; it uses Link 1, and its throughput is about 
50 Mbps. When Flow 2 is turned on, Flow l's throughput drops dramatically due to sharing. The 
delegate on Timberline then changes the route of Flow 1 to use Whiteface. Flow l's throughput 
recovers back to about 50 Mbps. When Flow 3 is turned on, Flow l's throughput again drops to 
about half, because of the competition on Link 3. When Flow 2 ends, the available bandwidth on 
Link 1 (50 Mbps) is higher than Flow l's current throughput (about 25 Mbps). Flow 1 is routed 
with the default route, which uses Link 1. As can be seen, the throughput of Flow 1 goe s back to 
about 50 Mbps. In the meantime, Flow 3 receives the full reservation on Link 3 and its throughput 
is improved to about 50 Mbps. In summary, with rerouting, delegates help the application's flows 

adapt to the route that has larger available bandwidth in a timely fashion. 

4.4    Selective dropping of non-adaptive flows 

Applications that do not use appropriate end-to-end congestion control are an increasing problem 
in the Internet. These applications do not back off when there is congestion, or they back off less 
aggressively than users that use correct TCP implementations, and as a result, they get an unfair 
share of the network bandwidth. We will refer to such flows as non-conformant. In response to 
this problem, researchers have developed a variety of mechanisms that try to protect conformant 
flows from non-conformant flows.   These include Fair Queueing scheduling strategies that try to 
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Figure 8: Load-sensitive rerouting results. 

distribute bandwidth equally, and algorithms such as RED [14] and FRED [20] that, in case of 
congestion, try to selectively drop the packets of non-conformant flows. 

While, once deployed, these mechanisms will improve the fairness of bandwidth distribution 
at the bottleneck link, they address only part of the problem since they are designed to work 
locally. The problem is that non-conformant flows still consume (and probably waste) bandwidth 
upstream from the congested link. Upstream routers may not respond to the non-conformant flow, 
for example because they have no support for detecting non-conformant flows, or because the flow 
cannot be detected (e.g. because of aggregation in a core router), or because the flow appears to 
be conformant (e.g. does not cause congestion). This problem can be addressed by having routers 
propagate information on the non-conformant flows upstream along the path of those flows. This 
approach can also deal with denial-of-service attacks on servers: the server can report the attack 
to the router it is attached to, and the network can then track down, and selectively drop, that 
flow potentially all the way to the source. 

We implemented a simple version of this solution using delegates. A delegate locally monitors 
the congestion status and tries to identify non-conformant flows among the flows it is responsible for. 
In our implementation, a flow is considered to be non-conformant if its queue is overflowing for an 
extended period of time; more sophisticated mechanisms would be needed in a production version 
of the system. Once a "bad" flow has been identified, the delegate enables selective packet dropping 
for the flow, and sends the flow's descriptor to a peer delegate on the upstream router. When a 
delegate receives a report of a "bad" flow, it verifies that the flow indeed has a high bandwidth 
consumption and enables selective packet dropping, if possible, and forwards the message to the 
upstream router. Clearly, many alternative policies could be implemented; for example, only a 
certain percentage of the packets could be dropped to reduce its bandwidth instead of dropping all 
packets as in our implementation. 

We conducted two experiments to show the effectiveness of these delegates. In the first ex- 
periment, two TCP streams (m2-m4 and m3-m4) compete with a non-conformant UDP stream 
(m5-m4). The bottleneck link is Maui-m4. Throughputs of the TCP flows under different condi- 
tions are shown in Figure 9(a). In the first case, the UDP stream is switched off, and the two TCP 
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flows share the link bandwidth evenly. In Experiment 2, the UDP flow is present in the background 
and the TCP flows' performance is greatly reduced because of the UDP flow. In Experiment 3, the 
delegates are running on all three routers. The UDP flow from m5 to m4 does not cause congestion 
on the link between Whiteface and Maui, and therefore the delegate on Whiteface does not react. 
However, there is congestion on the Maui-m4 link, and Timberline correctly identifies the UDP flow 
as non-conformant. It then informs the delegate on Whiteface through the delegate communication 
channel. Both routers then drop the UDP flow's packets, and as a result, the two TCP flows recover 

their throughputs to about the same level as in Experiment 1. 

£ 15 
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Figure 9: Conformant TCP and FFT competing with non-conformant UDP. 

In the second experiment, a bursty but conformant (using TCP) distributed FFT computation 
competes with a non-conformant UDP stream. The FFT uses endpoints m2, m3 and m4, and the 
UDP stream uses nodes m5 and m4, as before. In Figure 9(b), we show how the FFT communication 
time is affected by the UDP flow under different conditions. We present results for two FFT data 
sizes, 0.5K and IK. As a base case, in Experiment 1, the UDP flow is idle. In Experiment 2, 
the UDP flow is active and as a result, the FFT communication times are dramatically increased. 
Finally, in Experiment 3 we deploy the delegates, which correctly identify the UDP flow and drop 
its packets. This reduces the communication times for the FFT compared to Experiment 2. 

4.5     A Virtual Private Network Service 

A Virtual Private Network(VPN) [12] is an overlay network that is created within an existing 
physical network. It is virtual in that there is no separate physical infrastructure for this network 
and multiple virtual networks can run simultaneously within one network. It is private in that the 
data traffic belongs to one virtual network must not be observed by other virtual networks that are 

sharing the same infrastructure. 
In a related project [19], we used Darwin as the basis for the development of a VPN service 

that allows per-VPN customization of control protocols and QoS support. A basic prototype has 
been running since October 1999. The per-VPN customizability relies on both the delegates and 
hierarchical resource management. Specifically, hierarchical resource management makes it possible 
to isolate the resources and traffic of different VPNs and to realize per-VPN QoS by having each 
VPN define its own subtree in the resource hierarchy. Delegates, on the other hand, allow control 

plane protocols specific to a VPN to be deployed dynamically. 
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To invoke the VPN service, users specify the topology of their VPN (e.g., virtual links and 
routers, bandwidth information, client networks that should be served by the VPN) and they 
specify the control plane protocols. The VPN service uses this information to determine what 
resources it needs in the network, and it then formulates a request for Beagle to set up VPN links 
and the control plane protocols (as delegates). One of the more difficult problems raised by this 
application is how to best deal with routing, given that different VPNs might use different routing 
protocols. We simply use a different table for each VPN in our current implementation [18]. Each 
VPN routing table is maintained by a routing daemon that implements RIP. The routing daemon 
currently coded in C is viewed as a special routing delegate. Once the VPN has been established, 
the user is notified and it can start sending data. Data packets originated from end-users belonging 
to a VPN are identified at the edge routers using our classifier. The edge router inserts a VPN 
ID into the packet header, and inside the network, core routers use flow classification based on the 
VPN ID to identify which VPN the packet belongs to. The data forwarding plane can then handle 
the packet appropriately, e.g., in terms of routing and QoS. IPsec is used for privacy. 

5    Delegate Security 

The programmable nature of an active network brings legitimate safety and security concerns. The 
safety issues brought to the routers by delegates include general code safety concerns, various types 
of denial-of-services attacks, and privacy and security concerns. For example, a malicious or badly- 
implemented delegate can pose various threats to the router ranging from router state corruption 
to machine crash. This problem is being addressed by many research groups, and solutions from 
a variety of runtime mechanisms (e.g. Java sandboxing) to compile time mechanisms (e.g. proof 
carrying code [21]). In this section, we focus on security issues related to traffic management and 
control. Examples of threats include unauthorized use of bandwidth allocated to other flows, and 
redirecting or dropping traffic belonging to other users. We explain these problems by examining 
three classes of increasingly more powerful delegates. 

The first class of delegates can control local resource allocation only, that is, only modify the 
classifier and scheduler states. The primary risks are: (1) A delegate manipulates traffic flows for 
which it is not responsible; (2) A delegate changes the scheduler parameters for resources belonging 
to other users. Our solution is based on associating delegates with specific flows and nodes in the 
resource tree, as shown in Figure 3. When Beagle sets up flows and delegates, it provides node 
operating system (OS) with information about what flows and resources a delegate can control. 
The node OS stores this information in the form of an access control list. At runtime, for each RCI 
call invoked by a delegaate to manipulate flows or access resources, the node OS checks whether 
the call is permitted for this delegate by consulting the access control list. While a simple all- 
or-nothing access control mechanism is sufficient for the examples we have considered so far, it is 
probably useful to have finer-grained access control over the range of actions a delegate can take. 
Resource management operations can be subdivided into more levels, such as monitoring traffic 
only, modifying the QoS parameters, changing the structure of a subtree (adding, deleting nodes). 
This is similar to UNIX file system access control. 

The second class of delegates can affect flow forwarding by changing the states in the forwarding 
engine. We still have the above-mentioned concerns: delegates manipulate flows that they are 
not theirs or change parameters associated with other flows. The solution using access control 
mechanisms can be used to prevent a delegate from manipulating other flows. However, a new 
set of problems comes into picture even when a delegate only operates on the flows it is in charge 
of: it can use its own flows to pose potential threats to other routers or end-hosts in the network. 
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For example a delegate can launch a denial-of-service attack by redirecting its own flows using 
tunneling to a victim server; a delegate can reroute its flow to critical links to cause congestion; or 
IP spoofing can occur if a delegate is allowed to add arbitrary tunnel headers to its flows. 

The key insight to address these new problems is to constrain the delegate actions within the 
virtual network that corresponds to the service being deployed. The virtual network consists of 
the links and routers that will be used by this service. Beagle reserves link resources and installs 
delegates on these routers. Beagle has a global view (the list of output inferfaces on the routers, 
the client networks, etc.) of the virtual network for each service. To make sure that the delegates 
actions are within the virtual network, at setup time Beagle passes its global view to the node OS 
of individual routers. With this information, the node OS is then able to verify whether or not the 

actions to be taken by delegates conform to the global view. 
So far we have assumed that all delegates are installed by Beagle, and that Beagle can be 

trusted to provide the appropriate access control information. In a richer delegate model, delegates 
can create other delegates under certain conditions. This would make it possible, for example, to 

deploy a signalling protocol that can create delegates as a delegate. This would allow the VPN 
service to be used to create hierarchies of VPNs. A similar but simpler example is that a delegate 

is allowed to transfer authority to another delegate. Supporting this model will require a richer 

specification of the delegate authorities than in the earlier models. 

6    Related Work 

In an active or programmable network, the functionality of the network can be extended on the 
fly, either through the use of active packets that carry the code that should be used to handle the 
packet, or by dynamically installing extensions on the routers [26]. The Darwin delegate facility 
is based on active extensions for performance and efficiency reasons: we do not want to pay the 
penalty of invoking customer code for every packet or even a very large number of packets. Instead, 
delegates execute out-of-band relative to the data flow and are executed asynchronously in response 
to specific events. As the examples in this report show, many routing functions are well-suited to 
this style of invocation. The drawback of this approach is that there is a higher cost associated with 
installing active code (signalling protocol required) than with active packets. This suggests that 
Darwin delegates may be less efficient than, for example, code groups in ANTS, for short-lived, 
"datagram-like" applications. A number of good overviews of active and programmable networking 

research are available in the literature [7, 25]. 
The Defense Advanced Research Projects Agency (DARPA)-sponsored Active Net Node OS 

working group defined an active node (AN) architecture [6]. The AN architecture supports an 
execution environment (EE) that can execute active applications (AA), which can be either active 
packets or extensions. The delegate runtime environment can be viewed as an EE executing in 
the control plane of the router. It handles "control" packets, while regular "data" packets follow 
the "cut through" channel, that is, they bypass the EE. While Darwin delegates follow the AN 
architecture, there is one difference. We have focused on the router programming interface, RCI, 

which is not explicitly present in the more general AN architecture. 
The Active Reservation Protocol (ARP) project [3] is developing a framework for fast imple- 

mentation and dynamic deployment of complex network control functions using an active network 
approach. Within this framework, new and modified services can be dynamically installed. A 
similar programming interface called the the protocol programming interface (PPI), is defined for 
control plane protocols to control the data forwarding path. So far ARP has focused on managing 
versions of traditional control protocols for routing and signaling, and not so much on support for 
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control protocols that are customized for specific users. Also, protocols in ARP are networkwide: 
their actions are not restricted to specific sets of flows. 

The Pronto [15] project provides a platform to support network programmability. Pronto 
supports a number of active networking models, including the one emphasized in Darwin: control 
plane programmability. One differences from Darwin is that some Pronto calls imply a stronger 
coupling between data and control plane. For example, Pronto achieves frame dropping by having 
the control plane identify the packets that should be dropped, while Darwin relies on a classifier 
in the data plane to identify those packets. The Darwin interface is also slightly richer, although 
there appears to be no reason why the additional calls could not be incorporated into Pronto. 

There has recently been a lot of work as part of the Xbind [17, 28] and TINA [11, 27] efforts 
to define a service-oriented architecture for telecommunication networks. While these efforts have 
similar goals to Darwin, there are also differences. First, services envisioned by Xbind and TINA are 
mostly telecommunications-oriented, while Darwin and delegates target a broader set of services. 
Second, while the focus of both TINA and Xbind is on developing an open service framework, the 
focus of Darwin is on developing mechanisms, e.g., for resource management, that can be customized 
to meet service-specific needs. 

In part as a result of efforts such as XBind, a standardization effort was started to define an 
industry standard for an interface for programmable networks. This work is done in the context of 
the IEEE P1520 working group[l]. Clearly this effort is similar to the Darwin RCI, and we hope 
that some of our results can feed into this standardization effort. Darwin is also looking at the 
broader question of how to structure and build a system that uses this interface effectively. Another 
related standards effort of a control interface for router is GSMP[22], but it is much more narrow 
in scope. 

7    Conclusion 

In this report we presented a programmable network architecture, in which the control plane func- 
tionality of the router can be extended using delegates, code segments that implement customized 
traffic control policies or protocols. Delegates affect how routers treat the packets belonging to a 
specific user through a well-defined programming interface, the router control interface (RCI). This 
open architecture offers opportunities to develop applicatins for routers to abroader community, 
including third-party software vendors and value-added service providers. 

The node architecture was implemented in the CMU Darwin system; we describe a number of 
delegate examples that were executed on our testbed to demonstrate a range of applications can 
receive benefits via such a system. The applications include congestion control for video streaming 
and load balancing for client-server applications. Examples on tracking down non-conformant traffic 
sources and dynamically deploying VPN services gave a flavor of specific network control policies 
can be created using such a programmable infrastructure. While the examples do not necessarily 
provide the optimal, or even a complete, solution to these problems, they do illustrate that a rich 
set of traffic control and management services can easily be deployed through the system we built. 
We plan to exten our work in the directions of generalization of the architecture, performance 
evaluation in wide area networks and dealing with delegate security issues. 
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